HANDB

INST

Powder Metal
Technologies
and
Applications

VOLUME

MECHANICAL ALLOYING FOR FABRICATION OF ADVANCED ENGINEERING MATERIALS

ELSEVIER

SECOND EDITION

MECHANICAL ALLOYING

NANOTECHNOLOGY, MATERIALS SCIENCE AND POWDER METALLURGY

M. SHERIF EL-ESKANDARANY

by

M. Sherif El-Eskandarany

Al Azhar University Cairo, Egypt

Introduction

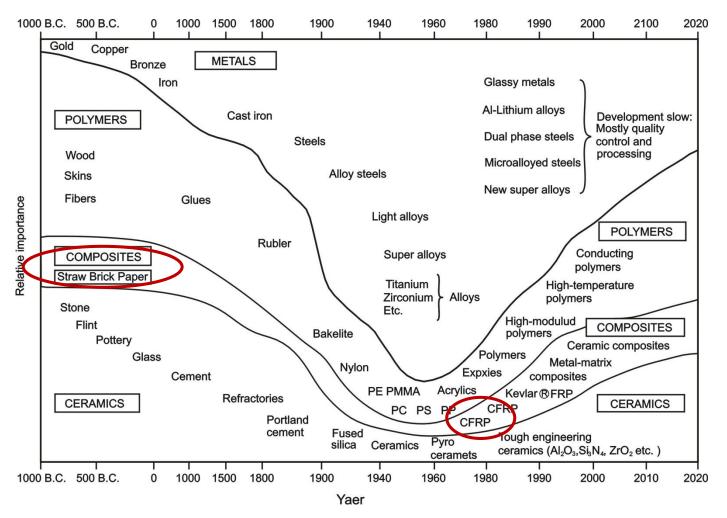


Fig.1. The relative importance of metals, polymers, composites and ceramics as a function of time.

Powder Metallurgy

- First used in 1900s to produce tungsten filaments
 - for light bulbs.
- Net-Shape forming.
- Typical Products:
 - -Gears, cams
 - Filters, Self-Iubricant oil bearings

Table 1 Major historical developments in powder metallurgy

Date	Development	Origin
3000 B.C.	"Sponge iron" for making tools	Egypt, Africa,
1200 A.D	Cementing platinum grains	India South America (Incas)
1781	Fusible platinum-arsenic alloy	France, Germany
1790	Production of platinum-arsenic chemical vessels commercially	France
1822	Platinum powder formed into solid ingot	France
1826	High-temperature sintering of platinum powder compacts on a commercial basis	Russia
	Wollaston method of producing compact platinum from platinum sponge (basis of modern P/M technique)	England
1830	Sintering compacts of various metals	Europe
1859	Platinum fusion process	24.0pt
1870	Patent for bearing materials made from metal powders	United States
1878-1900	(forerunner of self-lubricating bearings)Incandescent lamp filaments	77 1 1 0
1915-1930	Cemented carbides	United States
	Composite metals	Germany
Daily 1700 S , ,	Porous metals and metallic filters	United States
1920's	Self-lubricating bearings (used commercially)	United States
1940's 1940's	Iron powder technology	United States
19 5 0's and 1060's	D/M	Central Europe
	including P/M forgings	United States
	Hot isostatic pressing, P/M tool steels, and superplastic superalloys	United States
1980's	Rapid solidification and injection molding technology	United States

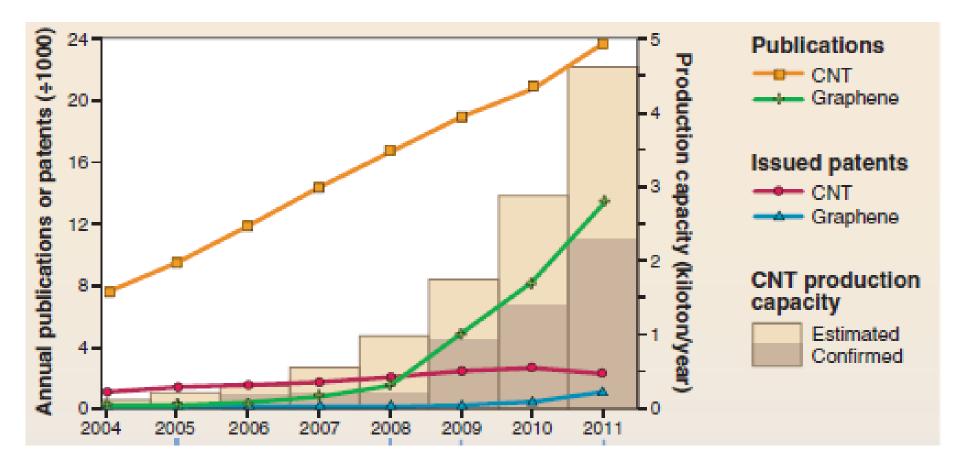
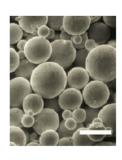
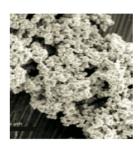


Fig. Number of publications on different metal matrix-CNT composites and production capacity

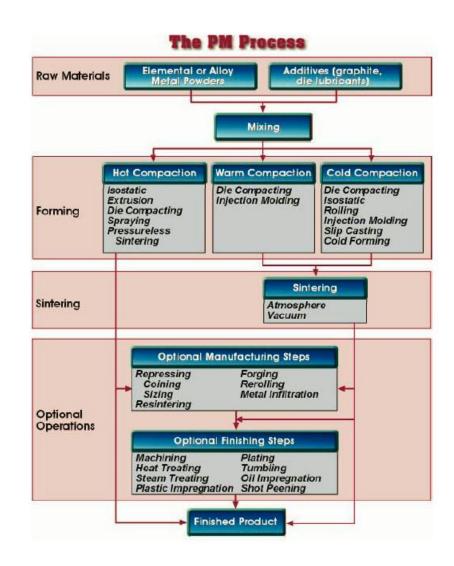
Powder Metallurgy Technology


General Classification


- Powder Technology
- Powder Processing

Powder technology

- It involves all processing operations to prepare the particles in the 100 μm range for subsequent shaping and consolidation processes.
 - Powder fabrication
 - > Mechanical
 - > Atomization
 - ➤ Electrolysis
 - Chemical synthesis
 - > Particle classification
 - Particle handling, modification and mixing
- Particle characterization and microstructure control are essential components of powder technology



Powder Metallurgy Technology (cont.)

Powder Processing

- ➤ It involves all operations to consolidate the particles to the final product
 - Shaping and compaction
 - Sintering
 - Densification
 - Finishing operations
 - Machining
 - > Heat treatment
 - > Joining
 - Coating
- Selection of processing methods depends on desired properties of final product.

Why Powder metallurgy?

It the only near net-shape manufacturing technology capable of fabricating parts for all types of materials

- Metals and intermetallics
- Ceramics
- Engineered materials: Composites and porous materials

Advantages

- Achieves a wide variety of alloy systems
- Facilitates manufacture of complex or unique shapes which would be impractical or impossible with other metalworking processes
- Maintains close dimensional tolerances
- Produces good surface finishes and eliminates or minimizes machining
- Provides controlled porosity for self-lubrication or filtration applications
- > Suited to moderate-to-high volume component productions requirements

Powder Metallurgy (P/M)

- Competitive with processes such as casting, forging, and machining.
- Used when
 - melting point is too high (W, Mo).
 - reaction occurs at melting (Zr).
 - too hard to machine.
 - very large quantity.
- Near 70% of the P/M part production is for <u>automotive applications</u>.
- Good dimensional accuracy.
- Controllable porosity.
- Size range from tiny balls for ball-point pens to parts weighting <u>100 lb</u>. Most are around <u>5 lb</u>.

Application for Gear Boxes

source: Sinterstahl GmbH, Füssen

© WZL / IPT

Fraunhofer Institut Produktionstechnologie

Seite 4

Applications in Automotive Engines

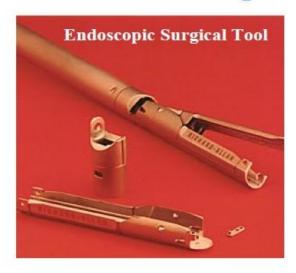
source: Sinterstahl GmbH, Füssen

© WZL / IPT

RWITHAACHEN

Seite 5

Example Applications


Automotive

Biomedical components

PM Products

Basics of P/M

- Highly developed method of manufacturing precision metal parts
- ☐ Made by mixing elemental or alloy powders then compacting the mixture in a die. The resulting shape is sintered in an atmosphere controlled furnace to convert mechanical bonds into metallurgical bonds.
- □ Basically a "chip-less" process, P/M uses roughly 97% of the starting material in the finished part.

Advantages of P/M

- -Versatile in numerous industries.
- -Eliminates or minimizes machining.
- -Minimizes scrap.
- -Maintain close dimensional tolerance.
- -Permits a wide variety of alloy systems.
- -Facilitates manufacturing of complex shapes.
- -Provides excellent part to part repeatability.
- -Cost effective.
- -Energy and environmentally efficient.

Limitations

- Size and complexity limitations
- High cost of powder metals compared to other raw materials
- High cost of tooling and equipment for small production runs